Acetylene reduction (nitrogen fixation) and metabolic activities of soybean having various leaf and nodule water potentials.

نویسندگان

  • C Y Huang
  • J S Boyer
  • L N Vanderhoef
چکیده

An apparatus was designed that permitted acetylene reduction (N(2) fixation) by root nodules to be measured in situ simultaneously with net photosynthesis, dark respiration, and transpiration of the shoot in soybean plants (Glycine max [L.] Merr. var. Beeson). Tests showed that acetylene reduction was linear with time for at least 5 hours, except for the first 30 to 60 minutes. Endogenous ethylene production did not affect the measurements. Successive determinations of acetylene reduction could be made without apparent aftereffects on the plant.This apparatus was used to investigate the effects of soil flooding and desiccation on acetylene reduction under conditions where soil, nodule, and leaf water potentials could be measured. No acetylene reduction was detectable in flooded soil or in soil desiccated to a water potential of -19.5 bars. Between these extremes, acetylene reduction displayed a sharp optimum. Removing the soil eliminated the inhibitory effects of flooding, suggesting that rates of gas exchange were restricted between the nodules and the atnosphere at soil water potentials above -2 bars.As the soil desiccated further, acetylene reduction decreased, and the decrease was correlated with decreases in photosynthesis and transpiration. Although dark respiration was inhibited, it was not affected to the extent that acetylene reduction, photosynthesis, or transpiration were. Consequently, it was concluded that photosynthesis, transpiration, or some direct effect on the nodules other than that caused by respiration were most likely to account for the inhibition of acetylene reduction at soil water potentials below -2 bars.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limitation of acetylene reduction (nitrogen fixation) by photosynthesis in soybean having low water potentials.

The role of photosynthesis and transpiration in the desiccation-induced inhibition of acetylene reduction (nitrogen fixation) was investigated in soybean (Glycine max [L.] Merr. var. Beeson) using an apparatus that permitted simultaneous measurements of acetylene reduction, net photosynthesis, and transpiration. The inhibition of acetylene reduction caused by low water potentials and their afte...

متن کامل

Leaf Nitrate Reductase, d-Ribulose-1,5-bisphosphate Carboxylase, and Root Nodule Development of Genetic Male-Sterile and Fertile Soybean Isolines.

The objectives of this study were to determine the effect of pod and seed development on leaf chlorophyll concentration, and on activities of leaf ribulose bisphosphate carboxylase, leaf nitrate reductase, and root nodule acetylene reduction in field-grown soybean (Glycine max [L.] Merr.). Two genetic male-sterile lines and their fertile counterparts (Williams and Clark 63) were compared in bot...

متن کامل

Regulation of soybean nitrogen fixation in response to rhizosphere oxygen: I. Role of nodule respiration.

Nitrogen fixation (acetylene reduction) rates of nodules on intact field-grown soybean (Glycine max) subjected to altered oxygen concentration (0.06-0.4 cubic millimeter per cubic millimeter) returned to initial rates during an 8-hour transitory period. Hydroponically grown soybean plants also displayed a transitory (1-4 hours) response to changes in the rhizosphere oxygen concentration after w...

متن کامل

Effect of Phosphorus Nutrition on the Nodulation, Nitrogen Fixation and Nutrient - Use Efficiency of Bradyrhizobium Japonicum – Soybean (glycine Max L. Merr.) Symbiosis

Characterization of nodule growth and functioning, phosphorus status of plant tissues and hostplant growth of nodulated soybean (Glycine max L. Merr.) plants grown under different phosphorus conditions was studied in order to evaluate the role of phosphorus in symbiotic nitrogen fixation. Phosphorus deficiency treatment decreased the whole plant fresh and dry mass, nodule weight, number and fun...

متن کامل

Carbohydrate partitioning and the capacity of apparent nitrogen fixation of soybean plants grown outdoors.

Patterns of leaf carbohydrate partitioning and nodule activity in soybean plants grown under natural conditions and the irradiance level required to produce sufficient carbohydrate to obtain maximum rates of apparent N(2)-fixation (acetylene reduction) were measured. Soybean plants, grown outdoors, maintained constant levels of leaf soluble sugars while leaf starch pools varied diurnally. When ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 56 2  شماره 

صفحات  -

تاریخ انتشار 1975